If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48t^2-14t-49=0
a = 48; b = -14; c = -49;
Δ = b2-4ac
Δ = -142-4·48·(-49)
Δ = 9604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9604}=98$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-98}{2*48}=\frac{-84}{96} =-7/8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+98}{2*48}=\frac{112}{96} =1+1/6 $
| x=36/2x+3 | | -5p-2(5-6p)=3(p-6)-24 | | 2/5=17/x | | -9q=6−8q | | -3/35=x/2 | | (20x+8)=(14+18x) | | 94+88+73+y=360 | | 8.2x+2025=67.24+45x | | 8x+5x-25=180 | | 0=(k-2/3)-33 | | -3z=7z+4 | | e/5=10 | | -6x+8x-6=2(x-4)-2 | | (-2)^x=-128 | | 8+8d=-10+10d | | 4(2x+6)=-2(x+13) | | 1=0.3x-0.9x-23 | | 2m+6+3=8m-15 | | -8=m/4+9 | | (4x+4)=(6x-11’ | | 8(x+5)=4(x+3)+4x | | X^2+16x=74 | | 5x+3/7=x/2 | | -5d+3=-8d-9 | | y+2/3=7/9 | | (x-3)(x+4)=x^2-7x-12 | | 5+8=10x+20x-4 | | 7x+8x-76=95-4x | | (5/3x-2)=(2x-7) | | 15w+19w-7+6=-4w+6-7 | | .33(12x-6)=-6+8 | | -1+2g=6+g |